A nonlinear ergodic theorem for asymptotically nonexpansive mappings in Banach spaces
نویسندگان
چکیده
منابع مشابه
A Mean Ergodic Theorem For Asymptotically Quasi-Nonexpansive Affine Mappings in Banach Spaces Satisfying Opial's Condition
متن کامل
a mean ergodic theorem for asymptotically quasi-nonexpansive affine mappings in banach spaces satisfying opial's condition
متن کامل
a mean ergodic theorem for asymptotically quasi-nonexpansive affine mappings in banach spaces satisfying opial's condition
0
متن کاملNonlinear Ergodic Theorem for Positively Homogeneous Nonexpansive Mappings in Banach Spaces
Recently, two retractions (projections) which are different from the metric projection and the sunny nonexpansive retraction in a Banach space were found. In this paper, using nonlinear analytic methods and new retractions, we prove a nonlinear ergodic theorem for positively homogeneous and nonexpansive mappings in a uniformly convex Banach space. The limit points are characterized by using new...
متن کاملConvergence Theorems for Asymptotically Nonexpansive Mappings in Banach Spaces
Let E be a uniformly convex Banach space, and let K be a nonempty convex closed subset which is also a nonexpansive retract of E. Let T : K → E be an asymptotically nonexpansive mapping with {kn} ⊂ [1,∞) such that P∞ n=1(kn − 1) < ∞ and let F (T ) be nonempty, where F (T ) denotes the fixed points set of T . Let {αn}, {βn}, {γn}, {αn}, {β′ n}, {γ′ n}, {α′′ n}, {β′′ n} and {γ′′ n} be real sequen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Japan Academy, Series A, Mathematical Sciences
سال: 1989
ISSN: 0386-2194
DOI: 10.3792/pjaa.65.284